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□( (g=5  ω<x) → ◇[0,τ] g=4)
□( idle → ω>1100 RPM)

□( (g1  “other” → ωem>0)

□( turnoff → ◇[0,τ] cc=off)
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Disclaimer

The views, opinions and technical results presented here are those of myself 
and my co-authors as subject matter experts, and they do not necessarily 
reflect the official policy or position of Toyota (or any of its member 
companies). 

The presenter is solely responsible for the accuracy and validity of the 
information presented.

Many of the results presented here are with external collaborators, and the 
code is (or will be) available for use under standard open-source code 
permissions.
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20-30 YEARS

Advanced Mobility R&D within TMNA R&D
Advancing R&D to discover better ways of moving people, goods and information
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FRD
Future 
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Our research focus
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 Requirements, 
verification, validation, 
testing, certification

Closed-
loop CPS

Machine learning 
enabled CPS

 Planning and control 
of heterogeneous 
multi-agent systems

 Human-robot 
interaction 
(planning, 
communication, 
coordination)



Moving on …
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What is “it”: System-under-test (SUT)
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insulin 
Infusion Pump

wearable 
continuous 
glucose 
monitor

Controller

Medical Devices: 
Artificial Pancreas

Sankaranarayanan et al, Model-based falsification of an artificial 
pancreas control system, ACM SIGBED Review 14 (2), 24-33
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What is “it”: System-under-test (SUT)
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Air-to-fuel 
ratio
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What is “it”: System-under-test (SUT)
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Anti-lock braking system

Lane 
tracing 

assist

Standard driver assistance systems
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What is “it”: System-under-test (SUT)

9
e-Palette

From automated driving systems to autonomy?

Toyota Memorial Hospital
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Testing/verification complexity*?
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Operating 
environment 

complexity

Testing/verification 
complexity

*For this graph, we ignore criticality/importance of the verification task

gas throttle 
temperature
pressure 
... 

insulin 
food
exercise
... 

throttle 
control surfaces
winds
load
... 

World???

untrained pedestrians
load
corridor traffic
... 

easier to make some assumptions – 
usually finite number of parameters

(almost) 
anything goes?
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Current practice in testing and verification
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Parameters

p1 … pm

𝑣11 … 𝑣1𝑛 … 𝑣𝑚1 … 𝑣𝑚𝑛

S
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e
n

a
ri

o
s

s1

s2

s3…
 

Pass/Fail entries, or even better some quantitative metric 

Benefits:
• Easy: A way to systemize testing (regression, system level, unit, etc)
• Informative: Is my new version better than the old one?

95 100

10 99

0 55
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Challenges with table driven V&V

1. What is an appropriate functional/performance requirements 
language to provide quantitative metrics?

 Are you running the right tests? Are all tests useful?

2. How do you know that your parameter 
discretization/quantization is good enough?

 What guarantees can you provide?
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Scenario exploration

• Can we avoid continuous parameter discretization? 
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Combinatorial 
search over discrete 
parameters, e.g., 
number of lanes, 
number of cars, etc

Tuncali, Fainekos, Rapidly-exploring random trees for testing 
automated vehicles, IEEE ITSC 2019 (best paper award)
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Requirements and quantitative measures 

To classify something as an “error” (unsafe behavior), we must formalize 
what a correct behavior is ... 

• If we know what safe behaviors are, then we can search for violations

• A simple requirement for ego as “Never crash” is not sufficient!

14
More useful requirement: “Never crash” unless what?

ego

adversarial 
agent



Formal requirements to 
capture the “unless”
Challenge 1
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Signal Temporal Logic* (STL) : Examples on signals
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F[2.4,3.2] (x>a)

time

a

Boolean
abstractionx>a

time

t

t

x
b

2.4 3.2

G[1.8,∞)¬(x>a)
¬(x>a)

timet 1.8

(¬(x>a)) U(2,2.8) (x>b)

x>b

timet

¬(x>a)

timet 2 2.8

Maler and Nickovic. "Monitoring temporal properties of continuous signals" FORMATS 2004
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p2

p1

Now satisfaction can be quantified …

G(p1→F2 p2) 𝑠1 = 5

G(p1→F2 p2) 𝑠2 = 0.5

17
Fainekos and Pappas, Robustness of temporal logic specifications, FATES/RV, 2006

STL Spec:
G((si  -10) → F2 (si  10))

p1 p2
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Example: Formalize responsible driving

Capture safe driver behavior for automated driving systems

1. Intel Mobileye: Responsibility Sensitive Safety (RSS) Rules
 S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a formal model of safe and scalable self-driving 

cars,” arXiv:1708.06374v6, 2018

2. NVIDIA: The Safety Force Field

18

From Figure 3 from [1]

“… before the Danger Threshold time there was a safe longitudinal distance, in an on 

coming scenario, hence both car should brake longitudinally.”

or when an ADS should not be blamed for an accident

Example:
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RSS: Safe Longitudinal Distance in One-Way Traffic
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𝒂𝒎𝒂𝒙,𝒂𝒄𝒄𝒆𝒍
𝒍𝒐𝒏  during

Response Time 𝝆

𝒂𝒎𝒊𝒏,𝒃𝒓𝒂𝒌𝒆
𝒍𝒐𝒏  

while breaking 

𝒂𝒎𝒂𝒙,𝒃𝒓𝒂𝒌𝒆
𝒍𝒐𝒏  

while breaking 

Safe Longitudinal Distance

Max movement 
before breaking

Max movement 
while breaking

Max movement 
while breaking

All cars move at the same direction from left to the right

ego car front car

P
re

lim
in

a
ri

e
s:
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a
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ta

n
c

e
s

𝜑𝑟𝑒𝑠𝑝
𝑙𝑜𝑛 ≡ 𝐺( 𝑆𝑏,𝑓

𝑙𝑜𝑛 ∧ 𝑋¬𝑆𝑏,𝑓
𝑙𝑜𝑛 → 𝑋𝑷𝒍𝒐𝒏)

𝑷𝒍𝒐𝒏 ≡ 𝑆𝑏,𝑓
𝑙𝑜𝑛 തℛ 0,𝜌 𝐴𝑏,𝑚𝑎𝑥𝐴𝑐𝑐

𝑙𝑜𝑛 ∧ 𝐴𝑓,𝑚𝑎𝑥𝐵𝑟
𝑙𝑜𝑛  ∧ 𝑆𝑏,𝑓

𝑙𝑜𝑛 തℛ 𝜌,+∞ 𝐴𝑏,𝑚𝑖𝑛𝐵𝑟
𝑙𝑜𝑛 ∧ 𝐴𝑓,𝑚𝑎𝑥𝐵𝑟

𝑙𝑜𝑛  

𝑆𝑏,𝑓
𝑙𝑜𝑛 ≡ 𝛾 𝑦𝑓, 𝑥𝑓 𝑦

− 𝛾 𝑦𝑏 , 𝑥𝑏 𝑦 − 𝑑𝑚𝑖𝑛,𝑙𝑜𝑛 > 0 

Hekmatnejad, et al, Encoding and Monitoring Responsibility Sensitive Safety (RSS) Rules 
for Automated Vehicles in Signal Temporal Logic, ACM-IEEE MEMOCODE 2019
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Basic Proper Response Specification

• 𝝋𝒓𝒆𝒔𝒑
𝒍𝒂𝒕,𝒍𝒐𝒏 ≡ 𝜑𝑙𝑜𝑛 ∧ 𝜑𝑙𝑎𝑡 ∧ 𝜑𝑙𝑎𝑡,𝑙𝑜𝑛

• 𝜑𝑙𝑜𝑛 ≡ □ ¬𝑆𝑙,𝑟
𝑙𝑎𝑡 ∧ 𝑆𝑏,𝑓

𝑙𝑜𝑛 ∧○ ¬𝑆𝑙,𝑟
𝑙𝑎𝑡 ∧ ¬𝑆𝑏,𝑓

𝑙𝑜𝑛 →○ 𝑃𝑙𝑎𝑡
𝑙𝑜𝑛

• 𝜑𝑙𝑎𝑡 ≡ □ ¬𝑆𝑏,𝑓
𝑙𝑜𝑛 ∧ 𝑆𝑙,𝑟

𝑙𝑎𝑡 ∧○ ¬𝑆𝑏,𝑓
𝑙𝑜𝑛 ∧ ¬𝑆𝑙,𝑟

𝑙𝑎𝑡 →○ 𝑃𝑙𝑜𝑛
𝑙𝑎𝑡

• 𝜑𝑙𝑎𝑡,𝑙𝑜𝑛 ≡ □ 𝑆𝑙,𝑟
𝑙𝑎𝑡 ∧ 𝑆𝑏,𝑓

𝑙𝑜𝑛 ∧○ ¬𝑆𝑙,𝑟
𝑙𝑎𝑡 ∧ ¬𝑆𝑏,𝑓

𝑙𝑜𝑛 →○ 𝑃𝑙𝑎𝑡
𝑙𝑜𝑛 ∨ 𝑃𝑙𝑜𝑛

𝑙𝑎𝑡

• 𝑃𝑙𝑎𝑡
𝑙𝑜𝑛 and 𝑃𝑙𝑜𝑛

𝑙𝑎𝑡  are modified versions of 𝑃𝑙𝑜𝑛 and 𝑃𝑙𝑎𝑡  where the propositions 𝑆𝑙,𝑟
𝑙𝑎𝑡  

and 𝑆𝑏,𝑓
𝑙𝑜𝑛 are replaced with the formula (𝑆𝑙,𝑟

𝑙𝑎𝑡 ∨ 𝑆𝑏,𝑓
𝑙𝑜𝑛).
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Experiments and Results

21

The Necessity of RSS in Testing
• 1000 test scenarios
• 23% RSS violation vs 60% CAS violation
• 19 tests did not lead to accident but violated RSS

Improving Search-based Testing through RSS
• falsifying the CAS specification
• 1000 test scenarios
• finds more dangerous test-driving scenarios
• 60% RSS violation vs 98% CAS violation
• 20 tests did not lead to accident but violated RSS

• falsifying the RSS specifications
• 350 test scenarios
• finds more relevant test-driving scenarios
• 16% RSS violation vs 85% CAS violation
• 1 test did not lead to accident but violated RSS
• classify test scenarios based on their violated constraints

Hekmatnejad, Hoxha, and Fainekos, Search-based Test-Case 
Generation by Monitoring Responsibility Safety Rules, IEEE ITSC 2020
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Perception and System level requirements

22

Vehicle Control

Perception System & Sensor Fusion Sensors

Camera

Controller

Decision 
Making

Low-level 
Control

LIDAR

Simulator (Webots)

Scene Rendering

Camera Projections

Vehicle & Environment Physical and 3D Models

Physics Engine Simulated Objects

Ray Tracing

Clustering etc 

Object Detection & 
Classification

Requirements 
Testing 

Main benefit of Requirements driven Simulation-
based testing: We know the ground truth!
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Requirements through temporal logics

Example: 

How do you violate such a requirement? 

23

If in the next 1 sec your localization error is LARGE and there exist objects which are visible but 
are NOT detected, then you should NOT crash within the next 5 sec.

If the localization error is large, an object is missed, and a collision occurred.

The requirement can be 
assigned a numerical value of 
satisfaction ((+) safe; (-) unsafe).

Tuncali et al, Requirements-driven test generation for autonomous 
vehicles with machine learning components, IEEE TIV 2019

1. Search-based testing
2. Regression testing 

comparison
3. Online monitoring of 

requirements 
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What about security related violations?
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Plant

Sensors

State 
Estimator

Feedback 
Controller

Anomaly 
Detector

Attacker

Alarm if
𝒈𝒕 > 𝜼

𝒚𝒕
𝒄

𝒙𝒕

ෝ𝒙𝒕

𝒖𝒕
𝒄

𝒂𝒕
𝒔

𝒂𝒕
𝒂

For this work, we assume we have 
access to sensors and actuators

Security Requirements (𝝋)

Instantaneous: 
¬ □[0,end] 𝑷(𝒈𝒕 > 𝜼) < 𝝐 ∧ ◇ 0,end 𝑃 𝒙𝑡 − 𝒙𝑡

∗ ≥ 𝛼 ≥ 𝛾

𝜹-sustained:
¬ 𝑃(𝑔𝑡 > 𝜂) ≤ 𝜖  U[0,end] ⊟[0,𝛿] 𝑃 𝒙𝑡 − 𝒙𝑡

∗ ≥ 𝛼 ≥ 𝛾

Probability of 
system state error 

exceeding threshold 
≥ γ

HistoricallyUntil

Probability of 
anomaly detector 
alarm going off ≤

𝜖

NOT

Chandratre, et al, Stealthy attacks formalized as STL 
formulas for Falsification of CPS Security, ACM HSCC 2023
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Falsification for discovering stealth attacks to CPS
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Guarantees
2nd Challenge

26
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Guarantees on testing? 
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What is the volume of the 
zero-sublevel set? 

What if SBTG terminates, but no falsifying behavior has been detected?
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Part-X (algorithm for level set identification)
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Part-X Level 1Part-X Level 2Part-X Level 3Part-X Level 4Part-X Level 5Part-X Level 6Part-X Level 7

Himmelblau’s Function
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Headline Accomplishment

Benefits/advantages over Monte Carlo (MC) sampling

• Part-X identifies the regions in the search space which are the 
least safe with respect to the requirement
 Part-X estimates what is the probability that a falsifying behavior exists 

even when no falsification is found 
 In contrast, if no falsifying behaviors are detected, then MC returns 0 as 

a probability of falsification

• Part-X is an importance sampling method
 It is provably at least as good as a Monte Carlo approximation

Part-X has been released as an open-source Python package
 https://gitlab.com/bose1/part-x 
 (it can also be integrated with Matlab)

29

Part-X family of optimization algorithms with probabilistic guarantees.
Estimate the volume of the zero-level set within the desired confidence levels.

Pedrielli, et al, Part-X: A Family of Stochastic Algorithms for Search-
Based Test Generation with Probabilistic Guarantees, IEEE TASE 2023

https://gitlab.com/bose1/part-x
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Part-X vs state of the art SBTG methods

• ARCH Falsification competition 
 Since 2017; 8 competing tools in 2021

 Compares SBTG test generation tools on CPS models (build using Matlab/Simulink)

 7 different models (e.g., F16 GCAS), 1 to 10 different requirements for each model

 All problems are falsifiable of different difficulty 

 Comparison only on how fast to detect falsifying points

• No other tool submission provides probabilistic guarantees

• Part-X performs competitively even against tools designed specifically for 
fast detection of falsifying system behaviors
 In addition, Part-X provides an estimate of the falsification region

30Pedrielli, et al, Part-X: A Family of Stochastic Algorithms for Search-
Based Test Generation with Probabilistic Guarantees, IEEE TASE 2023
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Bounded-time reachability analysis of NN-CPS

Assumptions:

• Control, perception and 
environment can be 
represented as (X)NN

• Vehicle can be model as 
NN or OΔE

Then:

• We can perform bounded 
time exhaustive verification

31

X0

𝑥𝑘+1 = 𝑓(𝑥𝑘)

Specification robustness 
range up to time T

0

Hashemi, et al, Neurosymbolic Approach to the Verification of Temporal Logic 
Properties of Learning-Enabled  Control Systems, ACM/IEEE ICCPS 2023 
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From requirements’ robustness to NN

32

X0

𝐬𝟎
𝐬𝟏𝐬𝟐 𝐬𝟑

𝐬𝐊−𝟐

𝐬𝐊−𝟏

𝐬𝐊

Theorem

ρ φ, {s0, s1, … , sK} ≥ 0 ↔ 
STL2NN s0, s1, … , sK ≥ 0 ↔ 
Temporal task is satisfied

∀ s0 ∈ X0:  {s0, s1, s2, … , sK} ⊨ Requirement

min a, b = 0.5 ( ReLU a + b + ReLU −a − b − ReLU b − a − ReLU a − b )

max a, b = 0.5 ( ReLU a + b + ReLU −a − b + ReLU b − a + ReLU a − b )

▪ Formulation of min/max of 2 variables in terms of ReLU neural network.
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Benefit? Use standard NN reachability tools

33

We can do requirements verification over NN-CPS using 
standard reachability analysis tools.

X0

[𝐥𝐛, 𝐮𝐛]

Robustness 
Range

STL2NN

s0

f

η
u0

f

η
u1

s1

f

η
uK−1

sK−1 sK

s0
*

Example reachability tools:
CROWN, POLAR, Sherlock, Veritex, NNV, … NNV 

Exact-star based reachability

Approx-star based reachability



TOYOTA RESEARCH INSTITUTE 
OF NORTH AMERICA

Conclusions

• To enable testing in “open” world environments we need assumptions and 
constraints on what reasonable tests are
 Temporal logics can offer such a path

• Functional requirements can enable search-based testing as well as 
regression testing
 Enabled through quantitative metrics 

• The AI/ML verification problem may be ill defined without some physical 
embodiment to achieve some functionality
 System level requirements may be better suited

34
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Open-source software tools

35

S-TaLiRo (https://app.assembla.com/spaces/s-taliro_public/wiki)

A Matlab toolbox for falsification, specification 
mining, monitoring, and conformance testing of 
Cyber-Physical Systems.

See RV 2019

PSY-TaLiRo (https://github.com/cpslab-asu/psy-taliro )

A Python toolbox for falsification and verification 
with probabilistic guarantees of Cyber-Physical 
Systems.

See FMICS 2021 
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