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Disclaimer

The views, opinions and technical results presented here are those of myself
and my co-authors as subject matter experts, and they do not necessarily

reflect the official policy or position of Toyota (or any of its member
companies).

The presenter is solely responsible for the accuracy and validity of the
information presented.

Many of the results presented here are with external collaborators, and the

code is (or will be) available for use under standard open-source code
permissions.
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Advanced Mobility R&D within TMNA R&D

Advancing R&D to discover better ways of moving people, goods and information

AMRD divisions are creating a sustainable society where all people enjoy a full life through Toyota’s technologies and products.
Teams are impacting today’s product development and tomorrow'’s societal needs and problems.
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Our research focus

Machine learning
enabled CPS

@® Requirements,
verification, validation,
testing, certification

@ Planning and control
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Moving on ...




What is “it": System-under-test (SUT)
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What is “it": System-under-test (SUT)
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What is “it": System-under-test (SUT)

Standard driver assistance systems

Anfti-lock braking system

Lane
tracing
assist
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What is “it": System-under-test (SUT)

From automated driving systems to autonomy?

e-Palette
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Testing/verification complexity*?

Operating
environment
complexity

easier to make some assumptions — (almost)
usually finite number of parameters anything goes?
D — —

throttle
control surfaces
winds
load
gas throttle insulin
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P food . World???
pressure exercise

untrained pedestrians
load
corridor traffic
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Current practice in testing and verification
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Pass/Fail entries, or even better some quantitative metric
Benefits:

* Easy: A way to systemize testing (regression, system level, unit, etc)
« Informative: s my new version better than the old one?
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Challenges with table driven V&V

1. What is an appropriate functional/performance requirements
language to provide quantitative metrics?
- Are you running the right tests? Are all tests useful?

2. How do you know that your parameter
discretization/quantization is good enough?
- What guarantees can you provide?
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Scenario exploration

- Can we avoid continuous parameter discretization?

L Combinatorial

+ W W search over discrete
- T T T + — parameters, e.g.,
number of lanes,
‘_ number of cars, efc
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Requirements and quantitative measures

To classify something as an “error” (unsafe behavior), we must formalize
what a correct behavior is ...

- If we know what safe behaviors are, then we can search for violations

- A simple requirement for ego as “Never crash” is not sufficient!

adversarial

agent i
€go a

More useful requirement: “Never crash” unless what?
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Formal requirements to
capture the “unless”

Challenge 1




Signal Temporal Logic* (STL) : Examples on signals
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Now satisfaction can be quantified ...
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Example: Formalize responsible driving

or when an ADS should not be blamed for an accident

Capture safe driver behavior for automated driving systems
1. Intel Mobileye: Responsibility Sensitive Safety (RSS) Rules

- S. Shalev-Shwartz, S. Shammah, and A. Shashuag, “On a formal model of safe and scalable self-driving
cars,” arXiv:1708.06374v6, 2018

2. NVIDIA: The Safety Force Field

Example:

From Figure 3 from [T]

“... before the Danger Threshold time there was a safe longitudinal distance, in an on
coming scenario, hence both car should brake longitudinally.”
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RSS: Safe Longitudinal Distance in One-Way Traffic

All cars move at the same direction from left to the right

Safe Longitudinal Distance
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Basic Proper Response Specification
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Pl and P!t are modified versions of P'" and P!t where the propositions Sl“t
and S;°F are replaced with the formula (/3" v S;°).
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=Xperiments and Results

The Necessity of RSS in Testing

* 1000 test scenarios

 23% RSS violation vs 60% CAS violation

* 19 tests did not lead to accident but violated RSS

Improving Search-based Testing through RSS

« falsifying the CAS specification

* 1000 test scenarios

« finds more dangerous test-driving scenarios
* 60% RSS violation vs 98% CAS violation (Bl aciamgges i
« 20 tests did not lead to accident but violated RSS

predicates # of violations description
f-?;';_—’}‘ 2 safe longitudinal distance
Slat 3 safe lateral distance
e 4 . Lr
° fGlSIfylng The RSS SpeCIfICGTIOhS Aff‘,',m’,___h_(_ 13 maximum allowed lateral acceleration
° 350 -I-eS-I- ScenCII’IOS .Alff]r;m Br 0 minimum required lateral brake
. L. . l'l{';jw 0 zero p—Ilateral velocity
« finds more relevant test-driving scenarios Vijat 0 non-positive yi—lateral velocity
o) . . o) . . A ;;’QMIACC 35 maximum allowed longitudinal acceleration
* -I 6 A) RSS VIOIGhon VS 85 A) CAS VIOlohon | Ay inBr 5 | minimum required longitudinal brake
« 1 test did not lead to accident but violated RSS I __ Execution Statisfics ____
[ violation % | 16.5% | falsified percentage using the RSS rules |
» classify test scenarios based on their violated constraints
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Percepfionand Sysfemlevel requirements

Vehicle Control
Sensors Perception System & Sensor Fusion

LIDAR Clusteringetc kbbbl

Controller

Decision Low-level

Camera Object Detection &
Making Control

Classification

Requirements
Testing

Simulator (Webots)
Scene Rendering Vehicle & Environment Physical and 3D Models

Camera Projections Physics Engine Simulated Objects

Ray Tracing

Main benefit of Requirements driven Simulation-
TRINI "0 Fesearci msrirure based testing: We know the ground truth!
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Example:

Requirements through temporal logics

If in the next 1 sec your localization error is LARGE and there exist objects which are visible but

are NOT detected, then you should NOT crash within the next 5 sec.

How do you violate such a requirement?

If the localization error is large, an object is missed, and a collision occurred.

1.  Search-based testing

2. Regression testing
comparison —

3.  Online monitoring of
requirements

The requirement can be
assigned a numerical value of
satisfaction ((+) safe; (-) unsafe).
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What about security related violations”?
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Falsification for discovering stealth a

acks to CPS
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Guarantees

2nd Challenge




Guarantees on testing?
What if SBTG terminates, but no falsifying behavior has been detected?

Robustenss

What is the volume of the
zero-sublevel set?
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Part-X (algorithm for level set identification)

Part=X Level 8
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Headline Accomplishment

Part-X family of optimization algorithms with probabilistic guarantees.

Estimate the volume of the zero-level set within the desired confidence levels.

Benefits/advantages over Monte Carlo (MC) sampling

- Part-X identifies the regions in the search space which are the N
least safe with respect to the requirement -]

- Part-X estimates what is the probability that a falsifying behavior exists
even when no falsification is found

- In contrast, if no falsifying behaviors are detected, then MC returns O as
a probability of falsification

0 2

- Part-Xis an importance sampling method
- It is provably at least as good as a Monte Carlo approximation

Part-X has been released as an open-source Python package
- https://qgitlab.com/bose1/part-x
* (it can also be integrated with Matlab)
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A LN NF" OF NORTH AMERICA %UMVERSITY Based Test Generation with Probabilistic Guarantees, IEEE TASE 2023



https://gitlab.com/bose1/part-x

Dart-X vs state of the art SBTG methods

- ARCH Falsification competition
- Since 2017; 8 competing tools in 2021

- Compares SBTG test generation tools on CPS models (build using Matlab/Simulink)
- 7 different models (e.g., F16 GCAS), 1 to 10 different requirements for each model
- All problems are falsifiable of different difficulty
- Comparison only on how fast to detect falsifying points

- No other tool submission provides probabilistic guarantees

- Part-X performs competitively even against tools designed specifically for
fast detection of falsifying system behaviors
- In addition, Part-X provides an estimate of the falsification region

'I'RIN TOYOTA RESEARCH INSTITUTE ' ARIZONA STATE Pedrriellj; et al, Part-X: A Family of Stochastic Algorithms for Search-
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Bounded-time reachability analysis of NN-CPS

Assumptions:

- Control, perception and
environment can be

represented as (X)NN ames [N Spkctontuctons
- Vehicle can be model as

NN or OAE
Then: -
- We can perform bounded l

tfime exhaustive verification ——

Specification robustness
range up totime T
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From requirements’ robustness to NN

SK
Sk-1 @
SK-2
Theorem
So p((P' {SO' S1y ee) SK}) =0 &
.!52s. STL2NN(sg, Sy, ..., Sg) = 0 ©
Xo Temporal task is satisfied

V sy € Xp: {Sg,S1, S, ..., Sk} E Requirement

Formulation of min/max of 2 variables in terms of ReLL.U neural network.

min(a,b) = 0.5 (ReLU(a + b) + ReLU(—a — b) — ReLU(b — a) — ReLU(a — b))
max(a,b) = 0.5 (ReLU(a + b) + ReLU(—a — b) + ReLU(b — a) + ReLU(a — b))

oYo SEARC S . .
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Benefit? Use standard NN reachability tools
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Example reachability tools:

Exact-star based reachability
CROWN, POLAR, Sherlock, Veritex, NNV, ... NNV

Approx-star based reachability

We can do requirements verification over NN-CPS using

standard reachability analysis tools.
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Conclusions

- To enable testing in “open” world environments we need assumptions and
constraints on what reasonable tests are
- Temporal logics can offer such a path

- Functional requirements can enable search-based testing as well as
regression testing
- Enabled through quantitative metrics

- The AI/ML verification problem may be ill defined without some physical
embodiment to achieve some functionality
- System level requirements may be better suited
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Open-source software tools

$-TaliRo

Y-TaliRo

Requirements driven Requirements driven

S test generation & T verification for CP$

| monitoring with probabilistic
guarantees

|
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LE A @

PSY-Ta |_| RO (https://github.com/cpslab-asu/psy-taliro )

T..g 4 ®

S'Ta |_| RO (https://app.assembla.com/spaces/s-taliro_public/wiki)

A Matlab toolbox for falsification, specification
mining, monitoring, and conformance testing of
Cyber-Physical Systems.

A Python toolbox for falsification and verification
with probabilistic guarantees of Cyber-Physical
Systems.

See RV 2019
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