

UNIVERSITÀ DEGLI STUDI DI BERGAMO

A | Dipartimento
I | di Ingegneria Gestionale,
D | dell'Informazione e della Produzione

How to define if, when, and how a system works? Reflections and experiences between industry and academia.

"It Works Really Well!": Verification in Theory and Practice Session: What Does "Works" Mean? Speaker

Claudio MENGHI

Date: Oct 5, 2023

What Does "Works" Mean?

UNIVERSITÀ Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

Robotics

Mission Specification Patterns for Mobile Robots: Providing Support for Quantitative Properties,

IEEE Transactions on Software Engineering, 2022 Menghi, Claudio; Tsigkanos, Christos; Askarpour, Mehrnoosh;

Pelliccione, Patrizio; Vazquez, Gricel; Calinescu, Radu; García, Sergio Specification patterns for robotic missions,

IEEE Transactions on Software Engineering, 2019 Menghi, Claudio; Tsigkanos, Christos; Pelliccione, Patrizio; Ghezzi,

Carlo: Berger, Thorsten

High-level mission specification for multiple robots, ACM SIGPLAN international conference on software language

engineering, 2019, García, Sergio; Pelliccione, Patrizio; Menghi, Claudio; Berger, Thorsten; Bures, Tomas

Promise: high-level mission specification for multiple robots, ACM/IEEE International Conference on Software Engineering: ompanion Proceedings, 2020,

Garcia, Sergio; Pelliccione, Patrizio; Menghi, Claudio; Berger, Thorsten; Bures Tomas

A Survey on the Design Space of End-User-Oriented Languages for Specifying Robotic Missions, International Journal of Software and Systems Modeling (SoSyM),

2021.

Dragule, Swaib; Berger, Thorsten; Menghi, Claudio; Pelliccione,

Space

Evaluating Model Testing and Model Checking for Finding Requirements Violations in Simulink Models, Foundations of Software Engineering, 2019, Nejati, Shiva; Gaaloul, Khouloud; Menghi, Claudio; Briand, Lionel C;

Foster, Stephen; Wolfe, David

Approximation-Refinement Testing of Compute-Intensive Cyber-Physical

Models: An Approach Based on System Identification, International Conference on Software Engineering, 2020, Menghi, Claudio; Nejati, Shiva; Briand, Lionel C.; Parache, Yago Isasi; Generating automated and online test oracles for Simulink models with continuous and uncertain behaviors, Foundations of Software Engineering, 2019,

Menghi, Claudio; Nejati, Shiva; Gaaloul, Khouloud; Briand, Lionel C. Mining Assumptions for Software Components using Machine Learning, Foundations of Software Engineering (ESEC/FSE), 2020, Gaaloul, Khouloud; Menghi, Claudio; Nejati, Shiva; Briand, Lionel; Wolfe, David;

Trace-Checking Signal-based Temporal Properties: A Model-Driven Approach. Automated Software Engineering (ASE), 2020,

Boufaied, Chaima; Menghi, Claudio; Bianculli, Domenico; Briand, Lionel; Parache, Yago Isasi Trace-Checking CPS Properties: Bridging the Cyber-Physical Gap,

International Conference on Software Engineering (ICSE), 2021, Menghi, Claudio; Viganò, Enrico; Bianculli, Domenico; Briand, Lionel C Combining Genetic Programming and Model Checking to Generate

Environment Assumptions, IEEE Transactions on Software Engineering, 2021, Gaaloul, Khouloud; Menghi, Claudio; Nejati, Shiva; Briand, Lionel C;

Parache, Yago Isasi Authors, Title, Publication, Volume, Number, Pages, Year, Publisher

Trace Diagnostics for Signal-based Temporal Properties, IEEE Transactions on Software Engineering, 2023, Boufaied, Chaima; Menghi, Claudio; Bianculli, Domenico; Briand, Lionel C:

o4Robots European Union's Horizon 2020 Grant agreement No 731869

TUNE European Research Council (ERC) erc Research Council Horizon 2020

Cyber-physical systems >

Search-based Software Testing Driven by Automatically Generated and Manually Defined Fitness Functions

ACM Transactions on Software Engineering and Methodology, 2023 F Formica: T Fan: C Mengh Simulation-based Testing of Simulink Models with Test Sequence and

Test Assessment Blocks,

Under Review F. Formica, T. Fan, A. Rajhans, V. Pantelic, M. Lawford, C. Menghi Test Case Generation for Drivability Requirements of an Automotive Cruise Controller: An Experience with an Industrial Simulator, ESEC/FSE Industry Track, 2023

F. Formica, N. Petrunti, L. Bruck, V. Pantelic, M. Lawford, C. Menghi

Safety Analysis

Assurance Case Development as Data: A Manifesto, International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER),2023, Menghi, Claudio; Viger, Torin; Di Sandro, Alessio; Rees, Chris; Joyce, Jeff; Chechik, Marsha

Assurance Case Arguments in the Large - CERN LHC Machine Protection System

International Conference on Computer Safety, Reliability and Security (SafeComp), 2023, Millet, Laure; Diemert, Simon; Rees, Chris; Viger, Torin; Chechik, Marsha; Menghi, Claudio; Joyce, Jeffrey

Supporting Assurance Case Development Using Generative Al, SAFECOMP 2023, Position Paper, 2023, Viger, Torin; Murphy, Logan; Diemert, Simon; Menghi, Claudio; Di, Alessio: Chechik, Marsha

The ForeMoSt Approach To Building Valid Model-Based Safety Arguments,

Software and Systems Modeling, 2022, Viger, Torin; Murphy, Logan; Di Sandro, Alessio; Menghi, Claudio; Shahin, Ramy; Chechik, Marsha

Automated Support for Cyber-Physical Systems Design: from Theory to Practice

Dipartimento di Ingegneria Gestionale, DI BERGAMO dell'Informazione e della Produzione

Grant agreement No 694277.

Robotics

Mission Specification Patterns for Mobile Robots: Providing Support for Mussion specification Patterns for Mobile Kobots: Providing Support for Quantitative Properties, IEEE Transactions on Software Engineering, 2022 Menghi, Claudio; Tsigkanos, Christos; Askarpour, Mehrnoosh; Pelliccione, Patrizio; Vazquez, Gricel; Calinescu, Radu; Garcia, Sergio

Specification patterns for robotic missions,

IEEE Transactions on Software Engineering, 2019 Menghi, Claudio; Tsigkanos, Christos; Pelliccione, Patrizio; Ghezzi, Carlo; Berger, Thorsten

High-level mission specification for multiple robots, ACM SIGPLAN international conference on software language engineering, 2019, Garcia, Sergio; Pelliccione, Patrizio; Menghi, Claudio; Berger, Thorsten;

Bures, Tomas

Promise: high-level mission specification for multiple robots, ACWIEEE International Conference on Software Engineering: Companion Proceedings, 2020, Garcia, Sergio; Pelliccione, Patrizio; Menghi, Claudio; Berger, Thorsten; Bures, Tomas

A Survey on the Design Space of End-User-Oriented Languages for Specifying Robotic Missions, International Journal of Software and Systems Modeling (SoSyM), 2021,

Dragule, Swaib; Berger, Thorsten; Menghi, Claudio; Pelliccione, Patrizio;

Co4Robots European Union's Horizon 2020 Grant agreement No 731869

UNIVERSITÀ | Dipartimento DEGLI STUDI di Ingegneria Gestionale, DI BERGAMO dell'Informazione e della Produzione

Problem Definition

UNIVERSITÀ | Dipartimento DEGLI STUDI | di Ingegneria Gestionale, DI BERGAMO | dell'Informazione e della Produzione Mission Specification Patterns for Mobile Robots: Providing Support for Quantitative Properties, IEEE Transactions on Software Engineering, 2022 Menghi, Claudio; Tsigkanos, Christos; Askarpour, Mehrnoosh; Pelliccione, Patrizio; Vazquez, Gricel; Calinescu, Radu; Garcia, Sergio

Specification patterns for robotic missions, IEEE Transactions on Software Engineering, 2019 Menghi, Claudio; Tsigkanos, Christos; Pelliccione, Patrizio; Ghezzi, Carlo; Berger, Thorsten

Funded by the Horizon 2020 Framework Programme of the European Union

Solution: Mission Specification Patterns and DSL

Mission Specification Pattern

- A template solution for a recurrent specification problem
- Maps a recurrent requirement to a specification (LTL/CTL)

Specification patterns for robotic missions, IEEE Transactions on Software Engineering, 2019 Menghi, Claudio; Tsigkanos, Christos; Pelliccione, Patrizio; Ghezzi, Carlo; Berger, Thorsten

Methodology

UNIVERSITÀ | Dipartimento DEGLI STUDI | di Ingegneria Gestionale, DI BERGAMO | dell'Informazione e della Produzione Mission Specification Patterns for Mobile Robots: Providing Support for Quantitative Properties, IEEE Transactions on Software Engineering, 2022 Menghi, Claudio; Tsigkanos, Christos; Askarpour, Mehrnoosh; Pelliccione, Patrizio; Vazquez, Gricel; Calinescu, Radu; García, Sergio

* * * Fu * * Fra * * * Eu

Funded by the Horizon 2020 Framework Programme of the European Union

Specification patterns for robotic missions, IEEE Transactions on Software Engineering, 2019 Menghi, Claudio; Tsigkanos, Christos; Pelliccione, Patrizio; Ghezzi, Carlo; Berger, Thorsten

Domain-Specific Language

Mission	miss	::= miss and miss miss or miss not miss rob shall pat e_qpat c_qpat			
Pattern	pat	::= visit (in sequence in order in strict order fairly)? locs			
	patrol (in sequence in order in strict order fairly)? locs				
		visit (more than less than exactly) n times loc			
	avoid (loc until cond loc loc after cond)				
	react (instantly with a delay promptly) to cond by (exec act pat reach loc)				
		counteract (instantly with a delay) when reach loc by cond			
		wait in location loc until cond			
Elementary	e_qpat	::= maximize m miss minimize m miss m at most v miss m less than v miss m at least v miss			
Patterns	m greater than v miss m exactly v miss m within v_1 and v_2 miss				
		m strictly within v_1 and v_2 miss			
Composite Patterns	c_qpat	::= conserve m while miss preserve m within [v ₁ ,v ₂] while miss pause v miss timeout v miss repeat miss every v end miss exactly at v time of miss ₁ proportional to miss ₂ by factor v execute rob actions act ₁ ,act ₂ ,act _n rob accrue m while miss achieve miss with reliability m (greater less) than v			
		achieve miss with confidence m (greater liess) than y robmiss equidistance rob. rob			
		rob trail o with distance w			
Condition	aand	in condition is true part is ended rob in los			
Locations	leas	$= \left[\log \left(\log^{1} \right) \right]$			
Locations	LOCS	$:= \{ \text{roc} (, \text{roc}) \}$			

* miss, miss₁, miss₂ are missions; v, v₁, v₂ are values; rob is a robot, o is an object, m is the name of the quantitative measure.

Specification patterns for robotic missions,

IEEE Transactions on Software Engineering, 2019

Mission Specification Patterns for Mobile Robots: Providing Support for Quantitative Properties, IEEE Transactions on Software Engineering, 2022 Menghi, Claudio; Tsigkanos, Christos, Askarpour, Mehrnoosh; Pelliccione, Patrizio; Vazquez, Gricel; Calinescu, Radu; García, Sergio

Menghi, Claudio; Tsigkanos, Christos; Pelliccione, Patrizio; Ghezzi, Carlo; Berger, Thorsten

* * * * * * *

Funded by the Horizon 2020 Framework Programme of the European Union

Domain-Specific Language

UNIVERSITÀ | Dipartimento DEGLI STUDI | di Ingegneria Gestionale, DI BERGAMO | dell'Informazione e della Produzione Mission Specification Patterns for Mobile Robots: Providing Support for Quantitative Properties, IEEE Transactions on Software Engineering, 2022 Menghi, Claudio; Tsigkanos, Christos; Askarpour, Mehrnoosh; Pelliccione, Patrizio; Vazquez, Gricel; Calinescu, Radu; García, Sergio

Funded by the Horizon 2020 Framework Programme of the European Union

Specification patterns for robotic missions, IEEE Transactions on Software Engineering, 2019 Menghi, Claudio; Tsigkanos, Christos; Pelliccione, Patrizio; Ghezzi, Carlo; Berger, Thorsten

Evaluation

UNIVERSITÀ Dipartimento DEGLI STUDI di Ingegneria Gestionale, **DI BERGAMO** dell'Informazione e della Produzione Mission Specification Patterns for Mobile Robots: Providing Support for Quantitative Properties, IEEE Transactions on Software Engineering, 2022 Menghi, Claudio; Tsigkanos, Christos; Askarpour, Mehrnoosh; Pelliccione, Patrizio; Vazquez, Gricel; Calinescu, Radu; García, Sergio

Specification patterns for robotic missions, IEEE Transactions on Software Engineering, 2019 Menghi, Claudio; Tsigkanos, Christos; Pelliccione, Patrizio; Ghezzi, Carlo; Berger, Thorsten

Funded by the Horizon 2020 Framework Programme of the

Robotics

End-user: final customers, mission specification engineers

Domain: robotics

Product: a domainspecific language inspired by natural language

Meaning of Work: does what is expected to do

European Research Council (ERC) Research Council Horizon 2020 Grant agreement No 694277.

Automated Support for Cyber-Physical Systems Design: from Theory to Practice

UNIVERSITÀ | Dipartimento DEGLI STUDI di Ingegneria Gestionale, DI BERGAMO dell'Informazione e della Produzione

Space

Evaluating Model Testing and Model Checking for Finding Requirements Violations in Simulink Models,

Foundations of Software Engineering, 2019, Nejati, Shiva; Gaaloul, Khouloud; Menghi, Claudio; Briand, Lionel C;

Foster, Stephen; Wolfe, David

Approximation-Refinement Testing of Compute-Intensive Cyber-Physical Models: An Approach Based on System Identification, International Conference on Software Engineering, 2020, Menghi, Claudio; Nejati, Shiva; Briand, Lionel C.; Parache, Yago Isasi;

Generating automated and online test oracles for Simulink models with continuous and uncertain behaviors, Foundations of Software Engineering, 2019,

Menghi, Claudio; Nejati, Shiva; Gaaloul, Khouloud; Briand, Lionel C. Mining Assumptions for Software Components using Machine Learning, Foundations of Software Engineering (ESEC/FSE), 2020, Gaaloul, Khouloud; Menghi, Člaudio; Nejati, Shiva; Briand, Lionel; Wolfe, David;

Trace-Checking Signal-based Temporal Properties: A Model-Driven Approach,

Automated Software Engineering (ASE), 2020, Boufaied, Chaima; Menghi, Claudio; Bianculli, Domenico; Briand, Lionel; Parache, Yago Isasi

Trace-Checking CPS Properties: Bridging the Cyber-Physical Gap, International Conference on Software Engineering (ICSE),2021, Menghi, Claudio; Viganò, Enrico; Bianculli, Domenico; Briand, Lionel C

Combining Genetic Programming and Model Checking to Generate

Environment Assumptions, IEEE Transactions on Software Engineering, 2021, Gaaloul, Khouloud; Menghi, Claudio; Nejati, Shiva; Briand, Lionel C; Parache, Yago Isasi

Authors, Title, Publication, Volume, Number, Pages, Year, Publisher Trace Diagostics for Signal-based Temporal Properties, IEEE Transactions on Software Engineering, 2023, Boufaied, Chaima; Menghi, Claudio; Bianculli, Domenico; Briand,

Lionel C;

Co4Robots European Union's Horizon 2020 Grant agreement No 731869

European Research Council (ERC) Research Horizon 2020 Grant agreement No 694277.

Automated Support for Cyber-Physical Systems Design: from Theory to Practice

Dipartimento DEGLI STUDI di Ingegneria Gestionale, DI BERGAMO dell'Informazione e della Produzione **Problem Definition**

How can we support engineers in **verifying** and **validating** CPS?

UNIVERSITÀ | Dipartimento DEGLI STUDI | di Ingegneria Gestionale, DI BERGAMO | dell'Informazione e della Produzione

Provide appropriate logic-based language to specify requirements + automated trace-checking procedure supporting this language

UNIVERSITÀ Dipartimento DEGLI STUDI di Ingegneria Gestionale, DI BERGAMO dell'Informazione e della Produzione

Hybrid Logic of Signals

HLS supports specifications that use

- a signal at a certain timestamp
- a signal at a certain index
- the timestamp of an index (and vice versa)
- expressions combining timestamps, indices, and real-valued variables

ThEodorE: Trace-checker

ThEodorE:

- Reduces trace-checking problem to a SMT problem
- Allows the use of efficient off-the-shelf SMT solvers

UNIVERSITÀ Dipartimento DEGLI STUDI di Ingegneria Gestionale, DI BERGAMO dell'Informazione e della Produzione

Evaluation

Evaluated from 212 industrial requirements

- **ThEodorE** computed a verdict for **74.5%** trace-requirement **combinations**.
- ThEodorE produced a verdict for 67.9% of the 337 trace-requirement combinations that could not be checked by the other tools.

UNIVERSITÀ | Dipartimento DEGLI STUDI | di Ingegneria Gestionale, DI BERGAMO | dell'Informazione e della Produzione

Pobotics	Space -
RODULICS	Space
End-user: final customers, mission specification engineers	End-users: space engineers/developers
Domain: robotics	Domain: space
Product: a domain- specific language inspired by natural language	Product: logic-based language
Meaning of Work: does what is expected to do	Meaning of Work: does not violate requirements
Co4Kobots European Union's Horizon 2020 Grant agreement No 731869	European European Research Council (ERC) Research Horizon 2020 Council Grant agreement No 694277.
UNIVERSITÀ Dipartimento di Ingegneria Gestiona	ile,

Autrimated Support for Cyber-Physical Systems Design: from Theory to Practice

2115

DI BERGAMO dell'Informazione e della Produzione

Cyber-physical systems

Search-based Software Testing Driven by Automatically Generated and Manually Defined Fitness Functions, ACM Transactions on Software Engineering and Methodology, 2023 F. Formica; T. Fan; C. Menghi

Simulation-based Testing of Simulink Models with Test Sequence and Test Assessment Blocks,

Under Review F. Formica, T. Fan, A. Rajhans, V. Pantelic, M. Lawford, C. Menghi Test Case Generation for Drivability Requirements of an Automotive Cruise Controller: An Experience with an Industrial Simulator, ESEC/FSE Industry Track, 2023 F. Formica, N. Petrunti, L. Bruck, V. Pantelic, M. Lawford, C. Menghi

Co4Robots European Union's Horizon 2020 Grant agreement No 731869

Research Council Horizon 2020 Grant agreement No 694277.

Automated Support for Cyber-Physical Systems Design: from Theory to Practice .NU

UNIVERSITÀ Dipartimento DEGLI STUDI di Ingegneria Gestionale, DI BERGAMO dell'Informazione e della Produzione

SBST – Example

speed $\leq 115 mph for t \in [0,20]s$

UNIVERSITÀ | Dipartimento DEGLI STUDI | di Ingegneria Gestionale, DI BERGAMO | dell'Informazione e della Produzione

Problem Definition

How can we combine/use the knowledge of engineers to detect violations of the system requirements?

Title: Automated Support for Cyber-Physical Systems Design: from Theory to Practice

Overall Goal: ``support engineers in developing safe CPS by defining novel software engineering solutions."

UNIVERSITÀ | Dipartimento DEGLI STUDI | di Ingegneria Gestionale, DI BERGAMO | dell'Informazione e della Produzione

Solution: Use Additional Knowledge from Engineers

Engineers are experts about their design

Use their knowledge to search test cases more effectively

UNIVERSITÀ | Dipartimento DEGLI STUDI di Ingegneria Gestionale, DI BERGAMO dell'Informazione e della Produzione

Search-based Software Testing Driven by Automatically Generated and Manually Defined Fitness Functions, ACM Transactions on Software Engineering and Methodology, 2023 F. Formica; T. Fan; C. Menghi

ATheNA

Reuse Engineers Knowledge

Engineers are already defining test cases

Reuse of Information Contained in Test Sequences and Test Assessment Blocks

UNIVERSITÀ | Dipartimento DEGLI STUDI | di Ingegneria Gestionale, DI BERGAMO | dell'Informazione e della Produzione

Simulation-based Testing of Simulink Models with Test Sequence and Test Assessment Blocks, Under Review (arXiv preprint arXiv:2212.11589) F. Formica, T. Fan, A. Rajhans, V. Pantelic, M. Lawford, C. Menghi

Hecate

Step	Transition	Next Step
PressNeitherButton	1. after(1,sec)	PressBothButtons
RedButtonIN = false; GreenButtonIN = false;		
PressBothButtons	1. after(1,sec)	PressRedButton V
RedButtonIN = true; GreenButtonIN = true;		
PressRedButton	1. after(1,sec)	PressGreenButton
RedButtonIN = true; GreenButtonIN = false;		
PressGreenButton	1. after(1,sec)	EndTest V
RedButtonIN = false; GreenButtonIN = true;		
EndTest		

Step	Transition	Next Step
⊡∕ Assessments		
Check1st when gear == 1 verify(speed < 45)		
: Check2nd when gear == 2 verify(speed < 75)		
Check3rd when gear == 3 verify(speed < 105)		
Else		

[Test Sequence]

[Test Assessment]

Test Input

Test Oracle

Simulation-based Testing of Simulink Models with Test Sequence and Test Assessment Blocks, Under Review (arXiv preprint arXiv:2212.11589) F. Formica, T. Fan, A. Rajhans, V. Pantelic, M. Lawford, C. Menghi

Drivability Failure

UNIVERSITÀ Dipartimento DEGLI STUDI di Ingegneria Gestionale, DI BERGAMO dell'Informazione e della Produzione

Test Case Generation for Drivability Requirements of an Automotive Cruise Controller: An Experience with an Industrial Simulator, ESEC/FSE Industry Track, 2023 F. Formica, N. Petrunti, L. Bruck, V. Pantelic, M. Lawford, C. Menghi

Robotics	> Space	Cyber-physical systems
End-user: final customers, mission specification engineers	End-users: space engineers/developers	End-users: developers of Simulink models
Domain: robotics	Domain: space	Domain: automotive, medical
Product: a domain- specific language inspired by natural language	Product: logic-based language	Product: block-based languages
Meaning of Work: does	Meaning of Work: does	Meaning of Work: does
what is expected to do	not violate requirements	not violate requirements
Co4KoDots European Union's Horizon 2020 Grant agreement No 731869	TUNE European European Research Council (ERC) Research Couneil Horizon 2020 Grant agreement No 694277.	Automated Support for Cyber-Physical Systems Design: from Theory to Practice
WIVERSITÀ Dipartimento		

UNIVERSITA Dipartimento DEGLI STUDI di Ingegneria Gestionale, DI BERGAMO dell'Informazione e della Produzione

Safety Analysis

Assurance Case Development as Data: A Manifesto, International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER), 2023, Menghi, Claudio; Viger, Torin; Di Sandro, Alessio; Rees, Chris; Joyce, Jeff; Chechik, Marsha

Assurance Case Arguments in the Large - CERN LHC Machine Protection

System, International Conference on Computer Safety, Reliability and Security (SafeComp), 2023, Millet, Laure; Diemert, Simon; Rees, Chris; Viger, Torin; Chechik, Marsha; Menghi, Claudio; Joyce, Jeffrey

Supporting Assurance Case Development Using Generative AI, SAFECOMP 2023, Position Paper, 2023, Viger, Torin; Murphy, Logan; Diemert, Simon; Menghi, Claudio; Di, Alessio; Chechik, Marsha

The ForeMoSt Approach To Building Valid Model-Based Safety Arguments, Software and Systems Modeling, 2022, Viger, Torin; Murphy, Logan; Di Sandro, Alessio; Menghi, Claudio; Shahin, Ramy; Chechik, Marsha

Co4Robots European Union's Horizon 2020 Grant agreement No 731869

Research Council Horizon 2020 Grant agreement No 694277.

Critical Systems Labs

Automated Support for Cyber-Physical Systems Design: from Theory to Practice

UNIVERSITÀ | Dipartimento DEGLI STUDI di Ingegneria Gestionale, DI BERGAMO dell'Informazione e della Produzione

Problem Definition

Assurance Case (AC): Argument decomposing high-level safety claims into refined sub-claims that are supported by evidence

GSN Syntax:

Problem Definition

How can we support engineers in the automated analysis of assurance cases?

UNIVERSITÀ | Dipartimento DEGLI STUDI | di Ingegneria Gestionale, DI BERGAMO | dell'Informazione e della Produzione

• Threat Assurance Cases as Data

Assurance Case Development as Data: A Manifesto,

International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER),2023, Menghi, Claudio; Viger, Torin; Di Sandro, Alessio; Rees, Chris; Joyce, Jeff; Chechik, Marsha

• Exploit the Power of Formal Reasoning

ForeMoSt

UNIVERSITÀ | Dipartimento DEGLI STUDI | di Ingegneria Gestionale, DI BERGAMO | dell'Informazione e della Produzione The ForeMoSt Approach To Building Valid Model-Based Safety Arguments, Software and Systems Modeling, 2022, Viger, Torin; Murphy, Logan; Di Sandro, Alessio; Menghi, Claudio; Shahin, Ramy; Chechik, Marsha

- describes a medium-size assurance case argument for the CERN Large Hadron Collider Machine Protection System expressed using Eliminative Argumentation.
- the assurance case has 509 nodes
- validated in collaboration with CERN experts
- is publicly available.

Assurance Case Arguments in the Large - CERN LHC Machine Protection System, International Conference on Computer Safety, Reliability and Security (SafeComp), 2023, Millet, Laure; Diemert, Simon; Rees, Chris; Viger, Torin; Chechik, Marsha; Menghi, Claudio; Joyce, Jeffrey

Questions

Robotics	Space	Cyber-physical systems	Safety Analysis
End-user: final customers, mission specification engineers	End-users: space engineers/developers	End-users: developers of Simulink models	End-users: safety engineers
Domain: robotics	Domain: space	Domain: automotive, medical	Domain: nuclear
Product: a domain- specific language inspired by natural language	Product: logic-based language	Product: block-based languages	Product: semi-structured arguments
Meaning of Work: does	Meaning of Work: does	Meaning of Work: does	Meaning of Work: it is
			adequately safe
European Union's Horizon 2020 Grant agreement No 731869	Research Furopean Research Council (ERC) Research Horizon 2020 Grant agreement No 694277.	CRSNG	

What Does "Works" Mean?

- L1. It is highly context and domain-dependent (automotive, space, service robots, ...)
- L2. It depends on the target users (end-users, requirements engineers, safety experts, ...)
- L3. It depends on the goal of specific activities (mission specification, testing, safety analysis, ...)

Questions

Parache, Yago Isasi

Wolfe, Davi

..

Robotics

Mission Specification Patterns for Mobile Robots: Providing Support for Quantitative Properties,

IEEE Transactions on Software Engineering, 2022 Menghi, Claudio; Tsigkanos, Christos; Askarpour, Mehrnoosh;

Pelliccione Patrizio: Vazquez Gricel: Calinescu Radu: García Sergio Specification patterns for robotic missions,

EEE Transactions on Software Engineering, 2019

Menghi, Claudio; Tsigkanos, Christos; Pelliccione, Patrizio; Ghezzi, Carlo: Berger, Thorsten

High-level mission specification for multiple robots, ACM SIGPLAN international conference on software language

engineering, 2019, García, Sergio; Pelliccione, Patrizio; Menghi, Claudio; Berger, Thorsten; Bures, Tomas

Promise: high-level mission specification for multiple robots, ACM/IEEE International Conference on Software Engineering:

ompanion Proceedings, 2020, Garcia, Sergio; Pelliccione, Patrizio; Menghi, Claudio; Berger, Thorsten; Bures Tomas

A Survey on the Design Space of End-User-Oriented Languages for

Specifying Robotic Missions, International Journal of Software and Systems Modeling (SoSyM), 2021.

Dragule, Swaib; Berger, Thorsten; Menghi, Claudio; Pelliccione, Patrizio

beister Tei Sergio Garcia Carlo Ghezzi Thorsten Berge Swaib Dragul

04Robots European Union's Horizon 2020 Grant agreement No 731869

Evaluating Model Testing and Model Checking for Finding Requirements Violations in Simulink Models,

Foundations of Software Engineering, 2019, Nejati, Shiva; Gaaloul, Khouloud; Menghi, Claudio; Briand, Lionel C; Foster, Stephen; Wolfe, David

Approximation-Refinement Testing of Compute-Intensive Cyber-Physical

Space

Models: An Approach Based on System Identification, International Conference on Software Engineering, 2020, Menghi, Claudio; Nejati, Shiva; Briand, Lionel C.; Parache, Yago Isasi; Generating automated and online test oracles for Simulink models with continuous and uncertain behaviors. Foundations of Software Engineering, 2019,

Menghi, Claudio; Nejati, Shiva; Gaaloul, Khouloud; Briand, Lionel C. Mining Assumptions for Software Components using Machine Learning, Foundations of Software Engineering (ESEC/FSE), 2020, Gaaloul, Khouloud; Menghi, Claudio; Nejati, Shiva; Briand, Lionel; Wolfe, David;

Trace-Checking Signal-based Temporal Properties: A Model-Driven Approach. Automated Software Engineering (ASE), 2020,

Boufaied, Chaima; Menghi, Claudio; Bianculli, Domenico; Briand, Lionel; Parache, Yago Isasi Trace-Checking CPS Properties: Bridging the Cyber-Physical Gap,

International Conference on Software Engineering (ICSE), 2021, Menghi, Claudio; Viganò, Enrico; Bianculli, Domenico; Briand, Lionel C Combining Genetic Programming and Model Checking to Generate

Environment Assumptions, IEEE Transactions on Software Engineering, 2021, Gaaloul, Khouloud; Menghi, Claudio; Nejati, Shiva; Briand, Lionel C;

Parache, Yago Isasi Authors, Title, Publication, Volume, Number, Pages, Year, Publisher

Trace Diagnostics for Signal-based Temporal Properties, IEEE Transactions on Software Engineering, 2023. Boufaied, Chaima; Menghi, Claudio; Bianculli, Domenico; Briand,

Lionel C; China Maisti Lienel Briand Casleyl Kheyleyd

Horizon 2020 Grant agreement No 694277.

Cyber-physical systems

Search-based Software Testing Driven by Automatically Generated and Manually Defined Fitness Functions ACM Transactions on Software Engineering and Methodology, 2023

F Formica: T Fan: C Menghi Simulation-based Testing of Simulink Models with Test Sequence and

Test Assessment Blocks, Under Review

F. Formica, T. Fan, A. Rajhans, V. Pantelic, M. Lawford, C. Menghi Test Case Generation for Drivability Requirements of an Automotive Cruise Controller: An Experience with an Industrial Simulator, ESEC/FSE Industry Track, 2023

F. Formica, N. Petrunti, L. Bruck, V. Pantelic, M. Lawford, C. Menghi

Emerging Results (ICSE-NIER),2023, Menghi, Claudio; Viger, Torin; Di Sandro, Alessio; Rees, Chris; Joyce, Jeff: Chechik, Marsha

Safety Analysis

Assurance Case Arguments in the Large - CERN LHC Machine Protection System

International Conference on Software Engineering: New Ideas and

International Conference on Computer Safety, Reliability and Security (SafeComp), 2023, Millet, Laure; Diemert, Simon; Rees, Chris; Viger, Torin; Chechik, Marsha; Menghi, Claudio; Joyce, Jeffrey

Assurance Case Development as Data: A Manifesto,

Supporting Assurance Case Development Using Generative Al, SAFECOMP 2023, Position Paper, 2023, Viger, Torin; Murphy, Logan; Diemert, Simon; Menghi, Claudio; Di, Alessio: Chechik, Marsha

The ForeMoSt Approach To Building Valid Model-Based Safety Arguments,

Software and Systems Modeling, 2022, Viger, Torin; Murphy, Logan; Di Sandro, Alessio; Menghi, Claudio; Shahin, Ramy: Chechik, Marsha

..

Marsha Chechik

Simon Diamar

Automated Support for Cyber-Physical Systems Design: from Theory to Practice

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

erc

UNIVERSITÀ Dipartimento DEGLI STUDI di Ingegneria Gestionale, DI BERGAMO dell'Informazione e della Produzione